
 

American Institute of Aeronautics and Astronautics 
 

 

1 

An Assessment of the Icing Blade and  

the SEA Multi-Element Sensor for  

Liquid Water Content Calibration of the  

NASA GRC Icing Research Tunnel 

Laura E. Steen1 and Robert F. Ide2 

HX5 Sierra, Cleveland, OH, 44135 

and 

Judith Foss Van Zante3 

NASA Glenn Research Center, Cleveland, OH, 44135 

The Icing Research Tunnel at NASA Glenn has recently switched from using the Icing 

Blade to using the SEA Multi-Element Sensor (also known as the multi-wire) for its calibration 

of cloud liquid water content.  In order to peform this transition, tests were completed to 

compare the Multi-Element Sensor to the Icing Blade, particularly with respect to liquid water 

content, airspeed, and drop size.  The two instruments were found to compare well for the 

majority of Appendix C conditions.  However, it was discovered that the Icing Blade under-

measures when the conditions approach the Ludlam Limit. This paper also describes data 

processing procedures for the Multi-Element Sensor in the IRT, including collision efficiency 

corrections, mounting underneath a splitter plate, and correcting for a jump in the 

compensation wire power.  Further data is presented to describe the repeatability of the IRT 

with the Multi-Element Sensor, health-monitoring checks for the instrument, and a sensing-

element configuration comparison.  Ultimately these tests showed that in the IRT, the multi-

wire is a better instrument for measuring cloud liquid water content than the blade. 

Nomenclature 

C = heat capacity of water (equal to 1.0 cal/g) 

d = thickness of ice accreted onto the Icing Blade, in mm 

Eb = collision efficiency for the Icing Blade (also frequently called the collection efficiency) 

EHP = collision efficiency of the half-pipe in the Multi-Element sensor (also frequently called the collection 

    efficiency) 

GRC = (NASA) Glenn Research Center 

IRT =  Icing Research Tunnel  

Levap =  latent heat of evaporation for liquid water, in cal/g 

LWC = Liquid Water Content, in g/m3 

MVD = median volumetric diameter, in µm 

lsense =  length of sensing element, in mm 

Pcomp =  power output for the compensation wire, in watts 

Pdry =  sensing element power attributed to surrounding ambient (non-liquid/ice water) conditions, in watts 

Pelem =  power output for a vertical sensing element, in watts 

Ptotal = total power output for a given sensing element, in watts 

Pwet  = sensing element power output that is attributed to the evaporation of liquid or ice water, in watts 

Svol = sample volume of sensing element 
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t = spray time, in seconds 

Tambient =  ambient (static) air temperature 

Tevap =  evaporative temperature of water (function of static air pressure) 

TAS = True Airspeed, in m/s 

TWC = Total Water Content: measured by the forward-facing half-pipe sensing element 

V = Tunnel Airspeed, in knots 

wsense = width of sensing element 

I. Introduction 

HE Icing Research Tunnel (IRT) at NASA Glenn Research Center (GRC) is considered one of the leading 

facilities in the world for studying aircraft icing and certifying aircraft to fly in icing conditions.  The icing cloud 

that is created in the IRT is calibrated regularly, which includes the cloud uniformity, drop size distributions, and 

liquid water content (LWC) of the cloud.  A poor determination of the cloud LWC (particularly an over-estimate) 

could result in inadvertent certification of an ice protection system that cannot handle the full amount of water loading 

that it may encounter in flight. 

For any given test facility, if there is a change in calibration instrumentation, a thorough analysis must be done to 

ensure that the information is accurate.  A direct correlation between the instruments must be established that spans 

the full range of expected test conditions.  If the facility calibration changes, it must be established whether these 

changes are due to changes in the facility itself or to changes in the instrumentation.  Calibration changes due to 

instrumentation are generally indicated by a disagreement between the new instrument and the old instrument.  If this 

happens, it must be accompanied by a rigorous analysis of the data and the principles that may have caused the change, 

so that either the new instrument or the old instrument may be trusted.  In recent years, as part of our effort to 

continually improve the IRT’s calibration instrumentation, the IRT staff have transitioned from using the Icing Blade 

to the Multi-Element sensor for liquid water content calibration.  Rigorous analysis of the two instruments has been 

done, including a direct comparison of the instruments that spans the full range of expected test conditions and an 

assessment of the capabilities and limitations of each.   

II. NASA Glenn Icing Research Tunnel 

All test data presented in this report were taken in the NASA Glenn Icing Research Tunnel.  The IRT is a closed-

loop, atmospheric icing tunnel, with a 1.83 m by 2.74 m by 6.10 m (6 ft by 9 ft by 20 ft) test section.  A tunnel 

schematic is shown in Fig. 1.  The IRT’s calibrated test section speed ranges between 50 and 350 knots.  The test 

section temperature can be controlled between +10 oC total temperature to -35 oC static temperature.  Drop sizes in 

T 

 
Figure 1. A plan view schematic of the Icing Research Tunnel. 
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the IRT are described in terms of median volumetric diameter (MVD), which is the drop diameter at which half the 

liquid water content volume is contained in smaller drops (and half in larger drops).  All water supplied to the IRT 

spray bars has been filtered and de-ionized.  There are two types of nozzles mounted in the spraybars: the Standard 

nozzles that have a higher water flow rate, and the Mod1 nozzles that have a lower water flow rate. Currently, there 

are 165 Standard nozzles and 88 Mod1 nozzles in the spray bars.  These air-atomizing spray nozzles can produce a 

cloud with drop-size distributions with a calibrated MVD between 14 and 270 µm, with diameters as high as 1200 

µm.  The calibrated LWC range of the IRT is between 0.2 and 4.5 g/m3, dependent on tunnel airspeed.   Nozzle air 

pressure and water pressure and nozzle type are used to create the desired MVD and LWC.  A full report on the cloud 

calibration of the IRT can be found in Ref. 1.  The results of the aero-thermal calibration of the IRT are reported in 

Ref. 2. 

III. The SEA Multi-Element Sensor 

A. Instrument Description 

The Multi-Element sensor, often called the multi-wire, and its data processing system were developed by Science 

Engineering Associates, Inc. (SEA).  A typical multi-element sensor is shown in Fig. 2a.  The sensing elements are 

positioned inside a heated shroud 

that is approximately 25.4 mm in 

diameter.  A typical multi-

element shroud contains three 

sensing elements of various sizes, 

as well as a compensation wire.  

The elements shown in Fig. 2b 

are a 2.1 mm diameter hollow 

cylinder, 2.1 mm diameter 

forward-facing half-pipe (Total 

Water Content, or TWC 

element), and a 0.5 mm diameter 

wire.  A compensation wire is 

located behind the central 

element, parallel to the shroud.  

The compensation wire (or 

“comp wire”) is intended to 

compensate for changes in 

atmospheric (dry) conditions.  

Newer multi-element sensors 

employ a 2.1 mm diameter rear-

facing half-pipe element in place 

of the hollow cylinder element.  

Single-element sensors are also 

available that contain only one 

sensing element and the 

compensation wire. 

B. Theory of Operation 

The theory of operation for the multi-element sensor is described here based on the information in the SEA User’s 

Manual3.  This report gives an abbreviated version from that text that is more targeted to the authors’ primary purposes, 

namely wind tunnel testing.   

The multi-element sensor works like a constant temperature anemometer.   A voltage is applied across each of the 

sensing elements, and the elements are maintained at a constant temperature of 140 oC.  As the sensor encounters 

airflow and impinging water, the data system records the total amount of power that is required to maintain each 

element at a constant temperature.  The main sensing element(s) are mounted perpendicular to the flow.  The total 

power (Ptotal) required to maintain these elements at a constant temperature includes both Pwet and Pdry. Pwet is the 

power required to warm and evaporate impinging water, and Pdry is the amount of power required to overcome all 

cooling influences except for water: namely, the surrounding airflow.  Thus, Pelem,total = Pelem,wet + Pelem,dry.    

Additionally, a compensation wire is mounted behind the sensing elements, parallel to the flow.  The compensation 

    
a) Multi-wire mounted in the Icing b) Close-up of the multi-wire  

Research Tunnel sensing elements 
 

Figure 2. The Multi-wire liquid water content instrument, SN 2022.  The 

sensing elements of the Multi-wire, as they are shown in (b) are the 2.1-mm 

hollow cylinder (left), the 2.1-mm diameter forward facing half-pipe 

(center), the 0.5-mm wire (right), and the compensation wire (behind). 
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wire is mounted to be shielded from the water drops, so its cooling influences are airspeed, air temperature, and relative 

humidity (Pcomp,total = Pcomp,dry = Pcomp).  The total power measured by each of the other sensing elements Pelem,dry is 

directly correlated to the compensation wire, Pcomp,total. SEA calibrates each element to determine this correlation in 

the following terms: 

 𝑃𝑒𝑙𝑒𝑚,𝑤𝑒𝑡 = 𝑃𝑒𝑙𝑒𝑚,𝑡𝑜𝑡𝑎𝑙 − (𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑠𝑙𝑜𝑝𝑒 ∗ 𝑃𝑐𝑜𝑚𝑝)           (1) 

Any changes to the compensation wire power will be reflected in the wet power of the sensing elements, and therefore 

in the calculated LWC during a spray.  Pre-spray (dry air) liquid water content values are zeroed (tared) through the 

data system before each spray so that the correct measured liquid water content is displayed. 

After the dry power term has been subtracted from the measurements, the wet power term must be converted into 

liquid water content.  The wet power includes the power required to heat the liquid water to its evaporative temperature 

as well as the power required to evaporate the liquid water (latent heat of evaporation).   In considering the evaporation 

of water at an ambient temperature, the amount of energy (heat) required (in calories per gram) can be written as: 

 

𝐶 (𝑇𝑒𝑣𝑎𝑝 −  𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡) +  𝐿𝑒𝑣𝑎𝑝 

 

Where Levap is the latent heat of evaporation (cal/g); Tevap is the evaporative temperature of water (oC). Both Levap 

and Tevap are a function of the static air pressure. Tambient is the initial temperature of the water (oC), which is assumed 

to be the same temperature as the static temperature of the air.  The constant coefficient C is the heat capacity of water, 

or the amount of energy required to raise the temperature of water by 1 oC, which is equal to 1.0 cal/g.  

In order to convert the amount of evaporated water (g) into liquid water content, (g/m3) the sample volume of the 

sensing element must be known.  This is calculated by the following equation: 

 

𝑆𝑣𝑜𝑙 = 𝑙𝑠𝑒𝑛𝑠𝑒 ∙ 𝑤𝑠𝑒𝑛𝑠𝑒 ∙ 𝑇𝐴𝑆    

 

where Svol is the volume of air sampled per unit time, lsense and wsense are the length and width of the sense element, 

and TAS is the true airspeed.  Lastly, all these terms are multiplied by a constant to account for the necessary unit 

conversions, and the equation for calculating liquid water content is therefore: 

 

 𝐿𝑊𝐶 =  
𝑃𝑠𝑒𝑛𝑠𝑒,𝑤𝑒𝑡∙2.389×105

[𝐿𝑒𝑣𝑎𝑝+𝐶(𝑇𝑒𝑣𝑎𝑝−𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡)]∙𝑇𝐴𝑆∙𝑙𝑠𝑒𝑛𝑠𝑒∙𝑊𝑠𝑒𝑛𝑠𝑒
 (2) 

 

This calculation, from Science Engineering Associates3, accounts only for measurements of liquid water content.  In 

the presence of ice, the calculations must account for the latent heat of fusion and the latent heat of evaporation. 

C. Multi-Element Sensor Test Setup: Splitter Plate Mount 

For all test results presented in this report, the multi-element sensor was mounted from the test section ceiling, 

positioned at vertical and horizontal centerline over the center of the test section turntable.   

During testing in the IRT it was found that the 88.4 mm (3.48 in)-thick mounting structure caused local flow 

angularity which created non-uniform flow at the sensor location.  This was made clear by spraying a cloud of 

supercooled liquid water at an unheated (sensors and deice turned off) multi-wire head and allowing ice to accumulate 

on the sensing elements.  The ice accumulated evenly except for a thin (approx. 1mm) region near the top of the 

sensing elements, closest to the strut, which had no ice buildup (Fig. 3a).  Note that the shadow region is on the side 

of the shroud that contains the compensation wire.  A substantial shadow could cause the comp wire to read too low, 

artificially increasing the LWC value.  However, if the vertical sensing element was substantially shadowed, that could 

in turn artificially decrease the LWC value.  Note that Fig. 3a also shows a thicker buildup of ice seen at the opposite 

end of some sensing elements.  To correct this problem in flow angularity, a splitter plate with a beveled heated front 

edge was mounted between the support and the multi-element sensor.   The aforementioned test was run again at the 

same conditions except at a colder total temperature (-17 oC instead of -10 oC), and the sensor showed uniform icing 

of the three elements (Fig. 3b).  Additional tests were completed using a 203.2mm long, 6.35 mm diameter rod 

mounted in the center of the test section.  Two sets of tests were completed: one with the rod mounted underneath a 

splitter plate, and one with the rod mounted directly on the 88.4-mm-thick mounting structure normally used for the  
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a) Multi-wire on mounting strut, no splitter b) Multi-wire mounted under splitter plate 

Figure 3. Photos from IRT tests to determine the effect of the mounting strut on the multi-wire sensor.  

Qualitative tests found that the sensors were “shadowed” near the support strut when the multi-wire was 

not mounted under a splitter plate.  Figure (a) was tested at a total temperature of -10oC and Figure (b) was 

tested at a total temperature of -17 oC. 

                           
a) Iced rod on mounting strut, no splitter (7.2 min) b) Iced rod under splitter plate (3.9 min) 

Figure 4. Pictures from Rod tests, showing ice accretion with and without splitter plate.  Conditions were 

150 knots, MVD=15 µm, LWC=0.5 g/m3.  Spray times were not equivalent. 
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multi-wire.  Although the spray times were different, visual 

examination showed that the ice uniformity was better with the 

splitter plate, as seen in Fig. 4.  These tests have demonstrated the 

importance of knowing the flow angularity into the multi-wire 

shroud. (Figure 5 shows the multi-wire mounted underneath the 

splitter plate.)  

During testing, any ice that builds up on the leading edge of the 

splitter plate is removed between test points. It has been found 

(particularly for very high-impingement rate sprays) that a buildup 

of ice on the leading edge of the splitter plate can cause the multi-

element sensor to read LWC values higher than normal.  Such 

conditions are easy to recognize in the data because the LWC 

continues to increase over the duration of the spray until the ice 

sheds, whereupon the LWC values drop back to where they were 

at the start of the spray.  Such data have not been included in this 

report; it may also be noted this effect is typically seen at 

impingement rates above those included here, and/or at lower test 

section temperatures.   

Furthermore, tests were conducted in 2009 and 2010 

comparing multi-wire measurements with and without a splitter 

plate to the blade.  After the multi-wire data were retroactively corrected for collision efficiency (see later section), 

which increased the multi-wire LWC values, the overall benefit of the splitter plate was found to be inconclusive for 

these data sets.  However, as stated above, there is reason to believe the flow quality is improved by adding a splitter 

plate.   

The IRT will continue to investigate options for an anti-iced mounting setup for the multi-wire that provides the 

greatest accuracy of measurement at all impingement rate values. 

D. Multi-Element Sensor Test Procedures 

For the majority of data acquisition with the multi-element sensor, the tunnel total temperature is held steady at -

10 oC, and tunnel airspeed is varied between 50-350 knots.  Once the desired spray bar air pressure and water pressure 

are set and the data system has been properly tared, the cloud is typically sprayed for two minutes. After the spray is 

complete, tunnel conditions are held steady for the next 30 seconds so the researchers can make sure the pre- and post-

spray baselines for the multi-wire have remained the same.  A shifted baseline could indicate a bad data point.  Also, 

to check sensor repeatability, there are a few conditions that are measured multiple times over the course of the day, 

including at both the start and end of the test period.  Results of these repeatability tests are given in the Test Results 

section.  

Starting in 2013, the IRT staff began conducting health-monitoring checks on the multi-element sensor at the start 

of every test entry. These health-monitoring checks were started to check the stability of the hot wire system and 

ensure no drift over time. During these checks, the tunnel airspeed was held at 75, 150, and 250 knots, all at a total 

temperature of +10 oC.  These were “dry” tests, with no cloud issued from the spray bars.  Spray bar air pressure was 

held at idle (1 psig).  It was determined that the accuracy of the temperature setpoint was not important enough to use 

a substantial amount of test time to achieve it, and so the tunnel operators were told to set the tunnel total temperature 

within 0.5 oC of +10 oC, and focus more on ensuring the set airspeed and temperature were steady (with temporal 

variations less than 1 knot and less than 0.1 oC).  The conditions were held steady for 2 minutes while the researchers 

recorded the tunnel conditions and power levels of all 4 sensing elements.  Results from these health-monitoring tests 

are given in the Test Results section. 

E. Data Processing for the Multi-Element Sensor  

1. Data Acquisition  

The IRT uses SEA’s M300 Data Acquisition System along with their WCM-2000 system to collect data from the 

multi-element sensor.  The M300 records the power output of each of the sensing elements and receives the facility 

conditions from the facility control system, including total temperature, static temperature, airspeed, static air pressure, 

spraybar nozzle pressures, and whether the spray is on or off.  All necessary calibration values and sensing element 

dimensions are received from the probe, and these are used along with the received facility conditions such that the 

data system can correlate the power of each sensing element to a calculated LWC.  All the recorded values are output 

as one-second averages into a CSV file.    

 
Figure 5. Multi-Element sensor mounted 

underneath a splitter plate.  
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2. Data Post-processing: MATLAB code 

Once the data has been retrieved from the 

M300, it is post-processed using a 

MATLAB® code that was developed in-

house.  This code averages the data system 

outputs for each spray, starting 20 seconds 

after the spray begins and ending 2 seconds 

before the spray ends.  The code calculates 

the pre-spray LWC values as a 10-second 

average, starting 15 seconds before the spray 

start.  These values are expected to be near 

zero, since the LWC readings from each 

sensor are typically tared before each spray 

begins.  Even so, the pre-spray LWC values 

are subtracted from averaged during-spray 

LWC values, in order to ensure elimination 

of background effects.  The post-spray LWC 

values are also calculated to determine if the 

background “dry” conditions changed 

substantially over the duration of the spray.  

The user is notified if the calculated LWC 

differ by more than 0.1 g/m3 between the 

start and the end of the spray.  Additionally, 

the power of the compensation wire is 

monitored, and the user is notified if the 

power drifts more than ±5% from its value 

shortly after the spray begins, or if the comp 

wire power changes by more than 4% when 

the spray begins.  A plot is generated for 

each spray, (example shown in Fig. 6), so 

that the user may view the profile of the data, 

compare it with the calculated values, and 

decide if the data seems reasonable.  

Substantial drifts in the LWC or 

compensation wire power over the course of the spray may indicate, for example, substantial ice buildup on the splitter 

plate leading edge.  Such drifting may require the data to be disregarded, or further processed manually.   

 

3. Collision Efficiency Correction 

The smallest drops in the cloud are diverted around the sensing elements rather than impinging, particularly at low 

speeds, and so the measured LWC must also be corrected for the collision efficiency of the sensor (also frequently 

called the collection efficiency). The primary sensor element used for liquid water content measurements in the IRT 

is the 2.1 mm diameter forward facing half-pipe.  In 2014, Rigby, Struk, and Bidwell modeled this sensing element 

along with the other two inside the multi-element sensor shroud using LEWICE3D, a particle trajectory code coupled 

with a three-dimensional flow field analysis. They determined the correlation between the drop collision efficiency 

and the modified inertia parameter for drop diameters of 5, 20, 50, and 100 µm4.  Struk then used this correlation to 

find total collision efficiency values based on particle size distributions measured in the IRT, rather than monodisperse 

drops5.  These values were in turn used to develop a formula for the collision efficiency correction as a function of 

MVD and airspeed in the IRT. Using this equation, collision efficiency corrections are applied to all data from the 

multi-element sensor to determine the actual cloud LWC based on the measured values.  It may be noted that in 2012 

the IRT staff started using a collision efficiency correction that was based on a 2D geometry of the sensing elements 

(an infinite half-pipe with no shroud). However, all the data in this report (taken before and after 2014) have been 

corrected with the collision efficiency correction based on the 3D geometry and the particle size distribution that was 

just described.  This correction is only 1-2% for drop sizes larger than 100 µm at airspeeds above 100 knots, but the 

correction increases as drop-size and airspeed decrease.  The water content may be as much as 10% higher than 

measured for a drop size distribution with an MVD of 20 µm at 100 knots.  For a drop size distribution with an MVD 

of 15 µm at 50 knots, the correction is greater than 15%.   

Figure 6. Example outputted plot from the in-house MATLAB 

code used to process multi-element sensor data. The top plot 

shows water content readings from the three vertical sensing 

elements, with asterisk markers showing the calculated 

average of the time-averaging segment, as well as diamond 

markers indicating the start and end of the time-averaged 

segment. The lower plot shows the corresponding comp wire 

trace, with markers for the start and end of the spray time. 
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4. Applying Corrections for Comp Wire Jump 

For some conditions in the IRT, the comp wire power has exhibited a step-increase in power (“jump”) at the same 

time that the spray begins.  One example of this is shown in the lower, red trace of Fig. 7.  Note that this figure shows 

traces for both the real-time measured comp-wire power, as well as the corrected “flat-lined” comp wire power and 

the corresponding TWC trace, which will be explained later in this section.  Examining the multi-wire data from the 

January 2012 Full Calibration showed that the comp wire power may increase by as much as 8% of the pre-spray 

comp wire power.  The cause for the increase in comp wire power has not been determined.  The comp wire is supposed 

to record changes in ambient (dry) conditions, which include air temperature, airspeed, air pressure, and humidity.  In 

a testing environment such as the IRT, these conditions are controlled to be constant.  It is understood that when a 

spray begins, the air temperature could rise slightly due to the added heat of the water in the cloud, but this would 

cause the comp wire power to decrease, not increase.  In some cases, the air humidity may also increase when the 

spray turns on, unless the airspeed is high enough that the static temperature is below the dew point, which creates a  

  

 
Figure 7. Example outputted plot from the in-house MATLAB code used to process multi-element sensor data. The top 

plot shows water content readings from the three vertical sensing elements, with diamond markers showing the start 

and end of the time-averaging segment, and large asterisk markers indicating the average water content for each 

element. Data is also shown calculating what the TWC would read if the comp wire was forced to a “flat” value, equaling 

the average of its pre-spray power. The lower plot shows the corresponding comp wire traces, real-time and forced flat, 

with markers for the start and end of the spray time. 
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a) Change in compensation wire power vs. measured TWC 
 

 
b) Change in compensation wire power vs. water impingement rate 

 

Figure 8.  Comparisons of the change in comp wire power at the start of the spray to the measured water 

content and water impingement rate. Pcomp,S is the average of 20 seconds of comp wire power data, starting 

20 seconds after the spray begins.   Pcomp,0 is the average of 10 seconds of comp wire power data starting 15 

seconds before the spray begins. The measured TWC is calculated as for all sprays: averaging the data 

starting 20 seconds after the spray begins and continuing until 2 seconds before the spray ends. The 

impingement rate is the measured TWC multiplied by the airspeed and the collision efficiency correction.  
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a) Change in measured TWC vs. original measured TWC 
 

 
b) Change in measured TWC vs. Water Impingement rate (calculated from original measured TWC) 
 

Figure 9. Comparisons of the change to the measured TWC vs. the uncorrected, measured TWC and vs. 

the impingement rate.  TWCS is the total water content calculated using the real-time (during-spray) comp 

wire power.  TWC0 is the total water content calculated from the flat-lined comp wire power that is the 

average of 20 seconds of data taken before the spray began.  The impingement rate is the uncorrected, 

measured TWC multiplied by the airspeed and the collision efficiency correction. The graph shows that at 

higher water contents, the originally-measured TWCS is about 2% lower than the corrected TWC0. 
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condensation cloud.  Since the comp wire jump is also seen at these higher speeds, it seems unlikely that the increasing 

humidity is causing the increase in comp wire power.   

Further examination of the data showed a correlation between the power increase exhibited by the comp wire and 

the measured water content of the spray condition, as shown in Fig. 8a.  This data may be further analyzed by 

calculating the impingement rate, which is: 

𝐼𝑚𝑝𝑖𝑛𝑔𝑒𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒 = 𝐿𝑊𝐶 ∗ 𝐴𝑖𝑟𝑠𝑝𝑒𝑒𝑑 ∗ 𝐸𝐻𝑃 

Where E is the collision efficiency of the half-pipe element. By using this equation and applying it to the data in Fig. 

8a, a better correlation is observed between the comp wire power increase and the water impingement rate, which is 

shown in Fig. 8b.  This correlation could suggest that the power increase is due to some sort of wetting of the comp 

wire from the spray.  This theory may be reinforced by noting that the comp wire power usually shows a step-increase 

and step-decrease in power at the same time the spray begins and ends, respectively. The data in Fig. 8 were taken 

with the SN 2023 sensing element, which has the 0.5-mm wire in the center in front of the comp wire.  Similar data 

analysis with other sensor configurations gave similar results, and there could be no conclusions drawn about what 

element configuration was “best” in terms of shielding the comp wire.  The IRT staff concluded from this that the 

comp wire power should not be increasing when the spray begins, and took steps to correct the data accordingly and 

understand the effect on the measured TWC.  

In 2016, with the help of SEA, the data acquisition code in the M300 was modified slightly to record two values 

for the comp wire power: one based on real-time measurements, and one that was “flat-lined” to equal the pre-spray 

comp wire power for the duration of the spray.  Correspondingly, two LWC values were calculated and recorded for 

each of the three vertical elements: one based on the real-time comp-wire power and one based on the flat comp wire 

power.  Figure 7 includes the “flat-lined” comp wire power, which is set to be the average of the 20 seconds taken 

before the spray began.  This trace shows a small spike in comp wire power at the start of the spray because the 

combined time that it takes the control system to communicate to the data system that the spray has turned on is about 

1-2 seconds.  Figure 7 also contains the water content from the TWC element that is calculated based on this flat-lined 

comp wire power.  Figures 9a and 9b were created by applying this correction to the January 2012 Full Calibration 

data and comparing the results.  Note that the data shows a convergence towards 2% at higher liquid water contents, 

even though Fig. 8b suggested that the comp wire power continually increases as the impingement rate increases.  To 

understand this, refer back to Eq. (1) and Eq. (2); when there is more water in the cloud, the wet-power of the other 

sensing elements is higher, such that changes in the comp wire do not have the same relative impact on calculated 

LWC.  Meanwhile, the reverse is also true, such that at low water contents, small changes in comp wire power can 

have large impact on calculated LWC.  Note that at these low water contents, even though the percentage change in 

LWC is large, the overall difference in LWC may still be only a few hundredths of a g/m3. It may be noted that other 

sensor head configurations were also studied in this same way, and the results were found to be comparable. 

It is for this reason that the code was modified to calculate LWC based on both the real-time comp wire power and 

the flat, pre-spray comp wire power.  The multi-wire data that is included in this report has been corrected by using 

the flat-lined comp wire power, except where indicated otherwise. 

Note that this is not the only time the comp wire has been observed to read higher dry power levels in a cloud, as 

was noted by Strapp & Lilie6.  They used a Nusselt Number—Reynolds Number (Nu-Re) regression to predict the dry 

air power when the spray is off, and used the predicted value as the dry power term to calculate TWC.  They found 

that doing so increased the LWC by an average of 4%, which is comparable to results presented here. 

F. Discussion of Multi-Wire Capabilities & Limitations 

Early on in testing, the multi-wire was found to have greater capabilities than the Icing Blade in that it has less 

limitations on operations.  It can be run at any air temperature, for any length of spray duration, and at a much wider 

range of cloud liquid water content and drop diameter conditions.  The sensor also has much greater test efficiency, 

allowing the user to collect many more data points over the span of a test day.  Additionally, the different element 

designs also enable the user to detect the presence of ice crystals in the cloud, because the 2-mm and 0.5-mm 

cylindrical elements are designed to only measure liquid water, while the 2-mm forward-facing half pipe is designed 

to capture and measure both liquid water and ice water.  

However, while the multi-wire has been found to be a significant improvement over the Icing Blade, it is also 

important to recognize the sensor’s limitations. Data from testing in other facilities suggests that at high liquid water 

contents, the multi-wire may suffer from minor effects of incomplete evaporation (pooling), and perhaps also suffer 

from splashing when there are ice crystals or large drops present4,7.  It should also be noted that in some environments, 

the multi-wire elements can become coated due to minerals in the cloud liquid water that remain after evaporation.  



 

American Institute of Aeronautics and Astronautics 
 

 

12 

This problem has been seen in NASA Glenn’s Propulsion Systems Laboratory, where city water may be sprayed 

through the nozzles in order to create ice crystals. In such environments, the elements will need to be regularly cleaned 

to remove the mineral deposits. Since the IRT water is filtered and deionized, this problem has not been seen in the 

IRT.  The sensing elements have been cleaned with no apparent effect on measurement, and health-monitoring tests 

have shown no change in dry power readings, as discussed later in this report. 

IV. The Icing Blade 

In contemplating using the multi-element sensor as the primary calibration tool for the IRT cloud liquid water 

content, it must first be validated against a more well-understood instrument. The icing blade has been the standard 

measurement tool for all liquid water content calibrations in Appendix C icing conditions in the IRT since 1980.   

A. Instrument Description & Test Procedures 

The Icing Blade (or simply “the blade”) is 3.18 mm 

wide by 154 mm long by 19.05 mm thick. It is mounted 

in such a way that it is located at the horizontal centerline 

and the vertical center of the test section (Fig. 10).  It is 

run at a tunnel total air temperature between -18 and -20 
oC in an attempt to ensure that rime ice is accreted on the 

3.18 mm flat face in most cases. 

For any given spray condition the tunnel is brought to 

the desired airspeed and the tunnel spray system is turned 

on for a prescribed time that will result in an average ice 

thickness of 3.8 mm on the blade.  The tunnel airspeed is 

brought to zero and the iced blade thickness is measured 

with chilled digital calipers in three vertical locations: 

centerline and centerline +/- 25.4 mm.  The ice width is 

also measured to ensure it does not exceed 5 mm.  The 

median of the 3 measurements is used for the calculation 

of LWC using Eq. (3). 

 

 𝐿𝑊𝐶 =  
1710 ∙𝑑

𝑉∙𝑡∙𝐸𝑏
       (3) 

 

Where: 1710 is a constant containing unit conversions 

and an assumed ice density of 0.88, d is the ice thickness 

in millimeters, V is the tunnel airspeed in knots, t is the 

spray time in seconds, and Eb is the blade collision 

efficiency.  The collision efficiency Eb is calculated as a 

function of airspeed, air density and drop size using the 

FWG two-dimensional particle trajectory code8. 

B. Discussion of Icing Blade Capabilities & Limitations  

The greatest advantages to using the blade are its simplicity and its reliability.  There is no data communication 

system to be concerned about. Mineral build-up is less of a concern with the blade because the ice is scraped off after 

every spray (not evaporated).  Additionally, the researcher may observe the characteristics of the ice that is accreted 

on its surface and thus have a better understanding of the cloud conditions.  If the ice is “pointed,” akin to an arrowhead 

shape, it indicates there are ice crystals present in the cloud that are ablating the surface.  If the width of the ice is too 

great, particularly if the ice has ragged edges, it indicates the water content may be so high that not all the impinging 

liquid water is freezing onto the forward-facing surface.  The blade has also proven to be a reliable instrument for low 

impingement rates.  Over multiple decades of calibrations and check-calibrations in the IRT, the blade LWC 

measurements have overall been repeatable to around ±5%, particularly for lower impingement rate values.  

Stallabrass9 performed an assessment of the various sources of error for both the icing blade and a small rotating 

cylinder. The general conclusion was that the errors were “relatively small”, on the order of 5% or less. He also found 

that the rotating cylinder and icing blade agreed to within 5% or less.  He concluded that these were “simple and 

 
Figure 10.  The icing blade, mounted in the center 

of the IRT test section.  Dimensions are 3.18 mm 

wide by 154 mm long by 19.05 mm thick (0.125 in. 

by 6 in. by 0.75 in.) 
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accurate methods of liquid water content measurement in applications where ready access to the droplet laden 

airstream is possible.” 

However, there are some substantial limitations to the use of the icing blade.  The LWC range over which the blade 

can be used is limited by the Ludlam Limit10.  The Ludlam Limit can be defined as the supercooled water impingement 

rate above which not all impinging water will freeze for a given air temperature. Water impingement rate is found by 

multiplying the airspeed, LWC and collision efficiency. Essentially, when the impingement rates are too high at a 

given air temperature, not all the impinging water accretes on the blade, and the calculated LWC is lower than what 

actually exists in the cloud.  Stallabrass calculated the Ludlam limit for a 2.54 mm diameter rotating cylinder9, as 

shown in Fig. 11. In applying his calculations to the icing blade, two considerations need to be made. First, the collision 

efficiency may be different between the cylinder and the blade.  The IRT has previously examined the difference in 

collision efficiency between a 3.18 mm blade and a 2.54 mm cylinder, during a series of tests run in 1998.  Collision 

efficiency calculations were made for airspeeds of 150 and 224 knots and for MVDs between 16 and 270 µm using 

the FWG two-dimensional particle trajectory code8.  The collision efficiencies were found to be within 2% of each 

other for all conditions.  Second, Stallabrass used the static temperature for his calculations, which is likely more 

 
Figure 11. The Critical Liquid Water Content (Ludlam Limit) for a 2.489 x 10-3

 m Cylinder, as determined 

by Stallabrass9. 
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appropriate for a rotating 

cylinder. Figure 12 shows 

Stallabrass’s calculations 

applied to the 3.18 mm 

blade, tested at a total 

temperature of -20oC.  In 

this figure, there are two 

Ludlam Limit curves, one 

that assumes the blade is at 

the total temperature (Ttot), 

and one that assumes the 

blade is at the static 

temperature (Tstat).  The 

temperature of the face of 

the blade must be between 

these two temperatures, so 

by plotting both lines, the 

bounds of the Ludlam Limit 

may be understood, even if 

the exact value is not.  It can 

be seen that the LWC range 

over which the icing blade 

can be used decreases as the 

airspeed increases. Above 

the Ludlam Limit, the ice 

width on the icing blade 

increases and some water is lost through runoff or blow off. This is why the width of the ice on the blade is measured 

and data is only accepted if the width is 5 mm or less. The Ludlam limit significantly impacts the range of conditions 

over which the icing blade can be used during tunnel calibrations and results in the LWC calibration being extrapolated 

for higher values.   

The LWC error from the blade can also be amplified in high-LWC conditions because these tend to require shorter 

spray times.  If the LWC is high enough that the spray is less than 20 seconds long (to avoid creating wide ice shapes), 

then even a 1-second error in the understood spray time can cause a 5% error in calculated LWC.  In practice the icing 

blade was used for exposure times as short as 12 seconds. 

The other limitation for use of the icing blade is the potential for mass loss due to splashing.  That is, some of the 

water content does not freeze but rather splashes off the face and into the freestream, thereby reducing the amount of 

accreted ice. The potential for mass loss increases with increasing airspeed and drop size.  Evidence of mass loss is 

demonstrated later in this report through comparisons with the SEA Multi-Element sensor.  

V. Test Conditions 

The majority of tests results discussed in this paper were part of cloud calibration efforts.  For these tests, test 

section airspeed ranged between 50 and 350 knots.  Liquid water content values ranged between 0.2 and 4.5 g/m3, 

with the maximum and minimum LWC dependent on test section airspeed.  Drop sizes ranged approximately between 

an MVD of 15 µm and 230 µm.  Tests with the blade were most commonly conducted at a total temperature between 

-18 and -20 oC.  Tests with the multi-wire were most commonly conducted at a total temperature of -10 oC. 

VI. Test Results 

A. Multi-Wire Dry Power Checks 

As described in the Multi-Wire Procedures section, the IRT staff has been doing “health-monitoring” of the multi-

wire by measuring the dry power levels of all the sensing elements at a total temperature of + 10 oC ± 0.5 oC, and at 

airspeeds of 75, 150, and 250 knots.  For these conditions, and in the interest of saving test time, it was more important 

that the temperature be steady than it be close to +10 oC.  Data were collected for the SN 2023 element over 7 test 

entries spanning more than 2 years.  For this sensor head, at 75 knots the standard deviation is 2.0% of the average 

TWC power.  At 150 knots, the standard deviation is 1.1% of the average power.  At 250 knots, the standard deviation 

is 3.0% of the average power.  Note that at 250 knots, there is often a condensation cloud in the IRT test section 

 
Figure 12. Stallabrass’s Ludlam Limit calculations, applied to the 1/8th inch 

blade tested at a total temperature of -20oC.  One curve assumes the blade is 

at the total temperature (Ttot), and one curve assumes the blade is at the 

static temperature (Tstat).  The actual temperature of the blade must be 

between these values. 
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because the dew point is higher than the static temperature.  For this airspeed, the element dry power appears to have 

some correlation to the moisture in the tunnel air.  There was no definite correlation observed between relative 

humidity and element power reading at the slower airspeeds, where no condensation cloud is observed. 

B. Multi-Wire and IRT Repeatability 

To check the combined repeatability of the IRT and the multi-wire, two specific test conditions were repeated 

multiple times during each test entry, one using the Mod1 nozzles and one using the Standard nozzles, both at 150 

knots, at a total temperature of -10 oC, and with an MVD of around 20 µm. All tests were completed with a single 

multi-wire head (SN 2023).  Note that this analysis provides neither the repeatability of the multi-wire alone, nor of 

the IRT cloud alone, but of both together, for this condition.  For this report, the results from five different test entries 

spanning two years were examined; there were a total of 27 measurements for the Mod1 nozzles and 29 measurements 

for the standard nozzles.  The standard deviation of the Mod1-nozzle condition was 2.55% of the mean value, and the 

standard deviation of the Standard-nozzle condition was 2.25% of the mean value. 

C. Comparing the Multi-Wire to the Icing Blade 

The blade and the multi-wire were compared for Appendix C (“typical” icing)11 conditions as well as Appendix O 

(supercooled large drop) conditions12.  The data from these tests were used to determine the capabilities and 

shortcomings of each instrument.   
 

1. Multi-wire compared to Icing Blade, with respect to Liquid Water Content 

Figure 13 shows measured LWC from the multi-wire compared to the blade for an airspeed of 150 knots and drop 

size of 20 µm, median volumetric diameter (MVD).  This figure shows data from the IRT’s two sets of spray nozzles: 

the Mod1 nozzles and Standard nozzles.  Recall that these nozzles primarily differ in that the Standards have a higher 

water flow rate, and thus produce higher LWC.  Figure 13 shows that the two instruments compare well at lower liquid 

 
Figure 13.  Measured LWC from the multi-wire compared to the blade for an airspeed of 150 knots and 

drop size of 20 µm, median volumetric diameter (MVD).  As its Ludlam limit is approached, the blade tends 

to read lower than the multi-wire. 
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water contents, but as the LWC increases above 1.8 g/m3, which is the Ludlam Limit for the blade at the total 

temperature, the multi-wire measures noticeably (more than 10%) higher than the blade.   

 

2. Multi-wire compared to Icing Blade, with respect to tunnel airspeed 

Similarly, Fig. 14 shows how the liquid water content measurements compare over a range of airspeeds.  The two 

instruments compare well for the Mod1 nozzles, but the blade measures lower than the multi-wire for the standard 

nozzles.   By comparing the Mod1 nozzle data with the standard nozzle data on this plot, it is evident that the difference 

between the two instruments is not due to water content alone or airspeed alone, but to both combined.  This is 

consistent with the definition of Ludlam Limit, which is found from water impingement rate.  Thus, there is reason to 

believe that at these higher impingement rates, not all the water that is impinging on the blade is accreting, and so 

measurements of the multi-wire are more accurate than the blade at higher impingement rates. 

 

3. Multi-wire compared to Icing Blade for large-drop conditions 

Further comparative tests were done between the blade and the multi-wire covering the full range of drop sizes in 

the IRT.  Drop size is described using the median volumetric diameter (MVD).  It was found from these tests that for 

a given spray bar air pressure, the more the drop size increased, the greater the separation between the blade and the 

multi-wire, as can be seen in Fig. 15, which plots the LWC measurements from each instrument for three different 

spray bar air pressures and three different airspeeds.  What is difficult to discern in this figure, however, is whether 

the blade measures lower than the multi-wire because the drop size is increasing, or because the liquid water content 

is increasing.  To further this analysis, the data in Fig. 15 is plotted in a new way in Fig. 16.  Here, the LWC from 

each instrument are compared directly for the three different airspeeds.  Different symbol colors indicate different 

ranges of drop size.  The white symbols represent the smallest drops (14 µm < MVD < 50 µm), the blue symbols 

represent the middle-range drops (50 µm < MVD < 125 µm) and the red symbols represent the largest drops (125 µm 

< MVD < 250 µm).  The white symbols in Fig. 16 show that the blade and the multi-wire compare well for lower 

values of LWC, although the blade still measures lower at the highest water content values on each plot.  

Comparatively, the blue symbols show the blade measures lower than the multi-wire at even lower values of LWC, 

while the red symbols indicate that the blade measures lower than the multi-wire at all LWC values.  From these plots 

it would appear that the blade is experiencing some sort of mass loss at larger drop sizes. 

 
Figure 14. Comparing liquid water content measurements from the blade and the multi-wire, varying 

tunnel airspeed.  Again, as its Ludlam limit is passed, the blade tends to read lower than the multi-wire. 
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a) Nozzle air pressure Pair= 30 psig 

 
b) Nozzle air pressure Pair= 5 psig 

 

 
c) Nozzle air pressure Pair= 2 psig 

 

Figure 15. Comparison between the multi-wire (solid points with solid lines) and the blade (white-filled 

points with no lines) for different drop sizes, characterized by MVD.  The different colors represent 

different airspeeds: grey is 100 knots, blue is 150 knots, and orange is 250 knots.  Note the maximum value 

on the x-axis is different for each plot. 
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It should be acknowledged that these plots do not indicate if the multi-wire probe may also be under-measuring at 

large drop sizes, as the hot-wire probes examined by Strapp, et. al., were shown to do12.  (Note that those hot-wire 

instruments, except for the Nevzorov probe, had a cylindrical wire as the main sensing element, not a forward-facing 

half-pipe.)  For the purpose of addressing this, refer to tests that were completed in the IRT in December 2014 with 

the Isokinetic Total Water Content Evaporator (IKP2) and the Multi-Element sensor6, shown in Fig. 17.  The IKP2 

was designed to measure the total water content of clouds for anticipated flights into deep convection where very high 

ice water contents are expected.  The probe works by drawing the air and the water into the probe body isokinetically 

and evaporating all water content, measuring the total water vapor, and subtracting off the ambient water vapor.  

Among other things, these tests included an MVD-sweep that showed that as drop size increased, the IKP2 leveled 

off reading about 10% higher than IRT LWC Cal, while the multi-wire leveled off reading 4-5% lower than the IRT 

LWC Cal (note this multi-wire data was not corrected for collision efficiency, which would cause the LWC at smaller 

drop sizes to be too low).  What is most important to note is that these ratios are consistent even at very large drop 

  
a) Test section airspeed = 100 knots b)     Test section airspeed = 150 knots 

 
c) Test section airspeed = 250 knots 

 

Figure 16.  TWC measured by the multi-wire compared to LWC measured by the blade for different drop 

sizes and airspeeds.  The different colored symbols represent different MVD ranges: white is 0 – 50 µm, 

blue is 50 – 125 µm, and red is greater than 125 µm.  The Ludlam limits for the blade are also shown, when 

the values are within the range plotted.  The red dashed line is the Ludlam Limit assuming the blade 

temperature is equal to the total temperature, the blue dashed line is the Ludlam Limit assuming the blade 

temperature is equal to the static temperature.  Each plot represents a different airspeed 

0.0

0.5

1.0

1.5

2.0

0 0.5 1 1.5 2

M
u

lt
i-

w
ir

e 
LW

C
, g

/m
3

Blade LWC, g/m3

0.0

0.5

1.0

1.5

2.0

0 0.5 1 1.5 2

M
u

lt
i-

w
ir

e 
LW

C
, g

/m
3

Blade LWC, g/m3

0.0

0.5

1.0

1.5

2.0

0 0.5 1 1.5 2

M
u

lt
i-

w
ir

e 
LW

C
, g

/m
3

Blade LWC, g/m3



 

American Institute of Aeronautics and Astronautics 
 

 

19 

sizes, which suggests that any mass loss from the multi-wire is the same as any mass loss from the IKP.  Addressing 

the 10% discrepancy between these two instruments is beyond the scope of this paper. 

D. Multi-Element sensor configurations 

A series of tests were conducted to determine the effect of sensor placement within the multi-wire shroud.  Two 

sensor heads were tested, each with a different sensor configuration. The SN 2022 head (shown in Fig. 2b) has a 

forward-facing, 2.1-mm diameter half-pipe sensor in the center with a 2.1-mm hollow cylinder and a 0.5-mm wire on 

the sides.  The SN 2023 sensor has the 0.5-mm wire in the center, with the 2.1-mm diameter half-pipe sensor and the 

2.1-mm hollow cylinder on the sides.  The 2023 sensor is a non-standard configuration, specifically ordered by the 

IRT from SEA to test the effect of sensor head placement.  Tests were run with airspeeds ranging from 50 to 250 

knots, LWC values between 0.2 and 4 g/m3, and drop size distributions with MVD values between 14 and 230 µm.  

For this section of the report, data are examined for all three sensing elements.  Results are shown in Fig.  18. In this 

figure, the TWC measured by forward-facing half-pipes in the different heads show good agreement, as do the water 

contents measured by from the 2-mm hollow cylinder.  The largest difference is seen in the 0.5-mm wire element, 

which indicates that at high water contents, particularly for standard-nozzle conditions, the wire in the SN 2023 head 

reads notably higher than the wire in the SN 2022 head.  One theory is that this is because when the 2mm-half-pipe 

element is in the center, aft of the other two sensors, the smaller drops in the cloud are diverted around the other two 

elements, and may be impinging on the 0.5-mm wire, since it has a higher collision efficiency.  Another theory is that 

water splashes off the two larger, upstream sensors and impinges as additional water content onto the 0.5-mm sensor.  

Since the IRT uses only the measurements from the TWC element, these results were enough to confirm that the 

variations between the sensor heads were no more than what is seen from normal multi-wire and IRT repeatability. 

 
a) Ratio IKP2 to IRT Cal Test Point LWC,   b)   Ratio MW IRT Cal Test Point LWC,  

       MVD Sweeps  MVD Sweeps 

Figure 17. MVD sweep results from Strapp & Lillie’s Dec 2014 tests in the IRT, testing the IKP2 alongside 

the multi-wire and comparing results from both to the IRT LWC Calibration6. 
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VII. Conclusions 

Tests have been performed to assess the accuracy of the SEA Multi-Element sensor (multi-wire) for liquid water 

content measurements in the NASA Glenn Icing Research Tunnel by comparing its measurements with the blade.   

To improve the data quality of the multi-wire, a few techniques have been implemented.  A collision efficiency 

correction has been calculated using LEWICE3D, a particle trajectory code coupled with a three-dimensional flow 

 
a) 2.1-mm diameter forward-facing half-pipe (TWC) element 

 
 b)  2.1-mm diameter hollow cylinder c) 0.5-mm diameter wire 

 

Figure 18. Multi-wire sensor head comparisons. SN 2022 (x-axis) has the half-pipe element in the center 

and the 2-mm hollow cylinder and 0.5-mm wire on the sides, and is also shown in Fig. 2b. SN 2023 (y-axis) 

has the 0.5-mm wire element in the center and the forward facing half-pipe and 2-mm hollow cylinder on 

the sides.  
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field analysis4 as well as particle size distributions measured in the IRT.  This collision efficiency correction is 

dependent on drop size and airspeed.  This correction is only 1-2% for 100-µm MVD distributions above 100 knots, 

but it can be greater than 15% at small drop sizes and low airspeeds.  Also, a correction has been implemented for the 

step-increase in compensation wire power that coincides with the start of the spray.  This correction averages around 

1-2% for high impingement rates.  The percent impact can be higher when sensor power levels are low.   

A few tests were also conducted to measure performance of the multi-wire compared to itself.  Health-monitoring 

tests were conducted by taking dry (spray off) power readings at +10 oC and airspeeds of 75, 150, and 250 knots.  The 

standard deviation for the power readings of the TWC element over these health-monitoring checks was 1-3% of the 

mean value.  Secondly, repeat points were compared for the Mod1 and Standard nozzles over 2 years of test entries 

(5 entries), to measure the combined repeatability of the multi-wire and the IRT.  For these conditions, the standard 

deviation of the TWC measurements was 2-3% of the mean value.  Lastly, comparisons were made of two different 

sensing element configurations: comparing the SN 2022 with a forward-facing half-pipe in the center, and the SN 

2023 with a 0.5-mm wire in the center.  The water contents measured by the TWC elements for these two 

configurations showed about the same level of variation as the aforementioned multi-wire and IRT repeatability points, 

suggesting that the TWC element is not affected by a change in configuration.  The 0.5-mm wire, however, reads 

higher LWC values when it is mounted in the center, slightly aft of the other two sensors, particularly at higher LWC 

values.  It has been theorized that this may be due to splashing from the other two larger sensors, or due to smaller 

drops being redirected around the two larger sensors and impinging on the smaller sensor that has a higher collision 

efficiency. 

Most importantly, comparative tests were done between the multi-wire and the blade to determine its accuracy for 

calibrating the LWC of the IRT.  Tests were completed to compare the two instruments with respect to LWC, airspeed, 

and drop size.  The blade and the multi-wire were found to compare well for most Appendix C conditions, but at high 

impingement rates, when conditions approach the Ludlam Limit, the blade undermeasures.  This is seen to be worse 

as drop size increases, which may suggest the blade is more prone to splashing.    

Based on these analyses, the authors have concluded that the Multi-Element sensor is a better instrument than the 

Icing Blade for LWC measurements in the IRT.  There is good agreement between the two instruments in the regions 

where agreement should be expected, and in high-impingement-rate conditions where there is disagreement, it can be 

expected that the Icing Blade is undermeasuring because of its Ludlam Limit.  Similarly, for large-drop conditions, 

there is more reason to suspect mass loss or splashing from the Icing Blade than from the multi-wire, particularly 

because the multi-wire and IKP had similar response at large-drop conditions.  The authors would like to acknowledge 

that they expect the multi-wire has a maximum LWC that the system is capable of measuring (possible pooling in the 

TWC element), as well as drop sizes that will be too large to be retained by the TWC element.  However, there were 

no indications of these problems during testing in the IRT, even with LWC values in excess of 4.5 g/m3 and drop size 

distributions with MVD values up to 230 µm (maximum drop diameter of 1200 µm).  
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